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Abstract— We present a fully homomorphic encryption
scheme that is based solely on the (standard) learning with
errors (LWE) assumption. Applying known results on LWE,
the security of our scheme is based on the worst-case hardness
of “short vector problems” on arbitrary lattices.

Our construction improves on previous works in two as-
pects:

1) We show that “somewhat homomorphic” encryption
can be based on LWE, using a new re-linearization
technique. In contrast, all previous schemes relied on
complexity assumptions related to ideals in various
rings.

2) We deviate from the “squashing paradigm” used in
all previous works. We introduce a new dimension-
modulus reduction technique, which shortens the ci-
phertexts and reduces the decryption complexity of our
scheme, without introducing additional assumptions.

Our scheme has very short ciphertexts and we therefore
use it to construct an asymptotically efficient LWE-based
single-server private information retrieval (PIR) protocol. The
communication complexity of our protocol (in the public-key
model) is k · polylog(k) + log |DB| bits per single-bit query
(here, k is a security parameter).

1. INTRODUCTION

Fully-homomorphic encryption is one of the holy

grails of modern cryptography. In a nutshell, a fully ho-

momorphic encryption scheme is an encryption scheme

that allows evaluation of arbitrarily complex programs

on encrypted data. The problem was suggested by

Rivest, Adleman and Dertouzos [34] back in 1978,

yet the first plausible candidate came thirty years later

with Gentry’s breakthrough work in 2009 [13], [14]

(although, there has been partial progress in the mean-

while [21], [31], [6], [22]).

Gentry’s work showed for the first time a plausible

construction of fully homomorphic encryption. How-

ever, his solution involved new and relatively untested

cryptographic assumptions. Our work aims to base

fully homomorphic encryption on standard, well-studied

cryptographic assumptions.
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The main building block in Gentry’s construc-

tion (a so-called “somewhat” homomorphic encryption

scheme) was based on the (worst-case, quantum) hard-

ness of problems on ideal lattices.1 Although lattices

have become standard fare in cryptography and lattice

problems have been relatively well-studied, ideal lattices

are a special breed that we know relatively little about.

Ideals are a natural building block to construct fully ho-

momorphic encryption in that they natively support both

addition and multiplication (whereas lattices are closed

under addition only). Indeed, all subsequent construc-

tions of fully homomorphic encryption [36], [11], [7]

relied on ideals in various rings in an explicit way. Our

first contribution is the construction of a “somewhat”

homomorphic encryption scheme whose security relies

solely on the (worst-case, classical) hardness of standard

problems on arbitrary (not necessarily ideal) lattices.

Secondly, in order to achieve full homomorphism,

Gentry had to go through a so-called “squashing step”

which forced him to make an additional very strong

hardness assumption – namely, the hardness of the

(average-case) sparse subset-sum problem. As if by

a strange law of nature, all the subsequent solutions

encountered the same difficulty as Gentry did in going

from a “somewhat” to a fully homomorphic encryption,

and they all countered this difficulty by relying on

the same sparse subset-sum assumption. This additional

assumption was considered to be the main caveat of

Gentry’s solution and removing it has been, perhaps,

the main open problem in the design of fully homomor-

phic encryption schemes. Our second contribution is to

remove the necessity of this additional assumption.

Thus, in a nutshell, we construct a fully homomorphic

encryption scheme whose security is based solely on the

classical hardness of solving standard lattice problems

in the worst-case.2 Specifically, our scheme is based

on the learning with errors (LWE) assumption that is

1Roughly speaking, ideal lattices correspond to a geometric embed-
ding of an ideal in a number field. See [25] for a precise definition.

2Strictly speaking, under this assumption, our scheme can evaluate
polynomial-size circuits with a-priori bounded (but arbitrary) depth.
A fully homomorphic encryption scheme independent of the circuit
depth can be obtained by making an additional “circular security”
assumption (see [8] for details).



known to be at least as hard as solving hard problems

in general lattices. Thus our solution does not rely on

lattices directly and is fairly natural to understand and

implement.

To achieve our goals, we deviate from two paradigms

that ruled the design of (a handful of) candidate fully

homomorphic encryption schemes [13], [36], [11], [7]:

1) We introduce the re-linearization technique, and

show how to use it to obtain a somewhat homo-

morphic encryption scheme that does not require

hardness assumptions on ideals.

2) We present a dimension-modulus reduction tech-

nique, that turns our somewhat homomorphic

scheme into a fully homomorphic one, without

the need for the artificial squashing step and the

sparse subset-sum assumption.

We provide a detailed overview of these new techniques

in Sections 1.1 and 1.2 below.

Interestingly, the ciphertexts of the resulting fully

homomorphic scheme are very short. This is a desir-

able property which we use, in conjunction with other

techniques, to achieve very efficient private information

retrieval protocols. See also Section 1.3 below.

1.1. Re-Linearization: Somewhat Homomorphic En-
cryption without Ideals

The starting point of Gentry’s construction is a

“somewhat” homomorphic encryption scheme. For a

class of circuits C, a C-homomorphic scheme is one

that allows evaluation of any circuit in the class C. The

simple, yet striking, observation in Gentry’s work is

that if a (slightly augmented) decryption circuit for a

C-homomorphic scheme resides in C, then the scheme

can be converted (or “bootstrapped”) into a fully homo-

morphic encryption scheme.

It turns out that encryption schemes that can evaluate

a non-trivial number of addition and multiplication

operations3 are already quite hard to come by (even

without requiring that they are bootstrappable).4 Gen-

try’s solution to this was based on the algebraic notion

of ideals in rings. In a very high level, the message is

considered to be a ring element, and the ciphertext is

the message masked with some “noise”. The novelty of

this idea is that the noise itself belonged to an ideal

3All known scheme, including ours, treat evaluated functions as
arithmetic circuits. Hence we use the terminology of “addition and
multiplication” gates. The conversion to the boolean model (AND,
OR, NOT gates) is immediate.

4We must mention here that we are interested only in compact fully
homomorphic encryption schemes, namely ones where the ciphertexts
do not grow in size with each homomorphic operation. If we do allow
such growth in size, a number of solutions are possible. See, e.g., [35],
[17], [26].

I . Thus, the ciphertext is of the form m + xI (for

some x in the ring). Observe right off the bat that the

scheme is born additively homomorphic; in fact, that

will be the case with all the schemes we consider in

this paper. The ideal I has two main properties: first, a

random element in the ideal is assumed to “mask” the

message; and second, it is possible to generate a secret

trapdoor that “annihilates” the ideal, i.e., implementing

the transformation m + xI → m. The first property

guarantees security, while the second enables multiply-

ing ciphertexts. Letting c1 and c2 be encryptions of m1

and m2 respectively,

c1c2 = (m1 + xI)(m2 + yI)

= m1m2 + (m1y +m2x+ xyI)I

= m1m2 + zI

When decrypting, the ideal is annihilated and the prod-

uct m1m2 survives. Thus, c1c2 is indeed an encryption

of m1m2, as required. This nifty solution required, as

per the first property, a hardness assumption on ideals in

certain rings. Gentry’s original work relied on hardness

assumptions on ideal lattices, while van Dijk, Gentry,

Halevi and Vaikuntanathan [11] presented a different

instantiation that considered ideals over the integers.

Our somewhat homomorphic scheme is based on the

hardness of the “learning with errors” (LWE) problem,

first presented by Regev [33]. The LWE assumption

states that if s ∈ Z
n
q is an n dimensional “secret” vector,

any polynomial number of “noisy” random linear com-

binations of the coefficients of s are computationally

indistinguishable from uniformly random elements in

Zq . Mathematically,

{
ai, 〈ai, s〉+ ei

}poly(n)

i=1

c≈ {
ai, ui

}poly(n)

i=1
,

where ai ∈ Z
n
q and ui ∈ Zq are uniformly random,

and the “noise” ei is sampled from a noise distribution

that outputs numbers much smaller than q (an example

is a discrete Gaussian distribution over Zq with small

standard deviation).

The LWE assumption does not refer to ideals, and

indeed, the LWE problem is at least as hard as find-

ing short vectors in any lattice, as follows from the

worst-case to average-case reductions of Regev [33]

and Peikert [32]. As mentioned earlier, we have a

much better understanding of the complexity of lattice

problems (thanks to [23], [2], [27] and many others),

compared to the corresponding problems on ideal lat-

tices. In particular, despite considerable effort, the best

known algorithms to solve the LWE problem run in



time nearly exponential in the dimension n.5 The LWE
assumption also turns out to be particularly amenable

to the construction of simple, efficient and highly ex-

pressive cryptographic schemes (e.g., [33], [19], [4], [5],

[10], [1] and many others). Our construction of a fully

homomorphic encryption scheme from LWE is perhaps

a very strong testament to its power and elegance.
Constructing a (secret-key) encryption scheme whose

security is based on the LWE assumption is rather

straightforward. To encrypt a bit m ∈ {0, 1} using

secret key s ∈ Z
n
q , we choose a random vector a ∈ Z

n
q

and a “noise” e and output the ciphertext

c = (a, b = 〈a, s〉+ 2e+m) ∈ Z
n
q × Zq

The key observation in decryption is that the two

“masks” – namely, the secret mask 〈a, s〉 and the “even

mask” 2e – do not interfere with each other.6 That is,

one can decrypt this ciphertext by annihilating the two

masks, one after the other: The decryption algorithm

first re-computes the mask 〈a, s〉 and subtracts it from

b, resulting in 2e +m (mod q). Since e � q, 2e +m
(mod q) = 2e + m. Removing the even mask is now

easy – simply compute 2e+m modulo 2.7

As we will see below, the scheme is naturally addi-

tive homomorphic, yet multiplication presents a thorny

problem. In fact, a recent work of Gentry, Halevi

and Vaikuntanathan [18] showed that (a slight variant

of) this scheme supports just a single homomorphic

multiplication, but at the expense of a huge blowup to

the ciphertext which made further advance impossible.
To better understand the homomorphic properties of

this scheme, let us shift our focus away from the

encryption algorithm, on to the decryption algorithm.

Given a ciphertext (a, b), consider the symbolic linear

function fa,b : Z
n
q → Zq defined as:

fa,b(x) = b−〈a,x〉 (mod q) = b−
n∑

i=1

a[i]·x[i] ∈ Zq

where x = (x[1], . . . ,x[n]) denotes the variables,

and (a, b) forms the public coefficients of the linear

5The nearly exponential time is for a large enough error (i.e.,
one that is a 1/poly(n) fraction of the modulus q). For smaller
errors, as we will encounter in our scheme, there are better – but
not significantly better – algorithms. In particular, if the error is a
1/2n

ε
fraction of the modulus q, the best known algorithm runs in

time approx. 2n
1−ε

.
6We remark that using 2e instead of e as in the original formulation

of LWE does not adversely impact security, so long as q is odd (since
in that case, 2 is a unit in Zq).

7Although the simplified presentation of Gentry’s scheme above
seems to deal with just one mask (the “secret mask”), in reality, the
additional “even mask” existed in the schemes of [13], [11] as well.
Roughly speaking, they needed this to ensure semantic security, as
we do.

equation. Clearly, decryption of the ciphertext (a, b) is

nothing but evaluating this function on the secret key s
(and then taking the result modulo 2).8

Homomorphic addition and multiplication can now

be described in terms of this function f . Adding two

ciphertexts corresponds to the addition of two linear

functions, which is again another linear function. In

particular, f(a+a′,b+b′)(x) = fa,b(x) + f(a′,b′)(x) is the

linear function corresponding to the “homomorphically

added” ciphertext (a+a′, b+b′). Similarly, multiplying

two such ciphertexts corresponds to a symbolic multi-

plication of these linear equations

f(a,b)(x) · f(a′,b)(x)
= (b−

∑
a[i]x[i]) · (b′ −

∑
a′[i]x[i])

= h0 +
∑

hi · x[i] +
∑

hi,j · x[i]x[j]
which results in a degree-2 polynomial in the variables

x = (x[1], . . . ,x[n]), with coefficients hi,j that can be

computed from (a, b) and (a′, b′) by opening paren-

thesis of the expression above. Decryption, as before,

involves evaluating this quadratic expression on the

secret key s (and then reducing modulo 2). We now run

into a serious problem – the decryption algorithm has to

know all the coefficients of this quadratic polynomial,

which means that the size of the ciphertext just went up

from n+ 1 elements to (roughly) n2/2.

This is where our re-linearization technique comes

into play. Re-linearization is a way to reduce the size of

the ciphertext back down to n+1. The main idea is the

following: imagine that we publish “encryptions” of all

the linear and quadratic terms in the secret key s, namely

all the numbers s[i] as well as s[i]s[j], under a new

secret key t. Thus, these ciphertexts (for the quadratic

terms) look like (ai,j , bi,j) where

bi,j = 〈ai,j , t〉+2ei,j+s[i]·s[j] ≈ 〈ai,j , t〉+s[i]·s[j] .9

Now, the sum h0+
∑
hi · s[i]+

∑
hi,j · s[i]s[j] can be

written (approximately) as

h0 +
∑

hi(bi − 〈ai, t〉) +
∑
i,j

hi,j · (bi,j − 〈ai,j , t〉) ,

which, lo and behold, is a linear function in t! The

bottom-line is that multiplying the two linear functions

f(a,b) and f(a′,b′) and then re-linearizing the resulting

expression results in a linear function (with n + 1

8The observation that an LWE-based ciphertext can be interpreted
as a linear equation of the secret was also used in [7].

9Actually, calling these “encryptions” is inaccurate: s[i] ·s[j] ∈ Zq

is not a single bit and therefore the “ciphertext” cannot be decrypted.
However, we feel that thinking of these as encryptions may benefit
the reader’s intuition.



coefficients), whose evaluation on the new secret key

t results in the product of the two original messages

(upon reducing modulo 2). The resulting ciphertext is

simply the coefficients of this linear function, of which

there are at most n+ 1. This ciphertext will decrypt to

m ·m′ using the secret key t.

In this semi-formal description, we ignored an im-

portant detail which has to do with the fact that the

coefficients hi,j are potentially large. Thus, even though

(bi,j − 〈ai,j , t〉) ≈ s[i]s[j], it may be the case that

hi,j · (bi,j − 〈ai,j , t〉) �≈ hi,j · s[i]s[j]. This is handled

by considering the binary representation of hi,j , namely

hi,j =
∑�log q�

τ=0 2τ · hi,j,τ . If, for each value of τ , we

had a pair (ai,j,τ , bi,j,τ ) such that

bi,j,τ = 〈ai,j,τ , t〉+ 2ei,j,τ + 2τs[i] · s[j]
≈ 〈ai,j,τ , t〉+ 2τs[i] · s[j] ,

then indeed

hi,j · s[i]s[j] =

�log q�∑
τ=0

hi,j,τ2
τs[i]s[j]

≈
�log q�∑
τ=0

hi,j,τ (bi,j,τ − 〈ai,j,τ , t〉) ,

since hi,j,τ ∈ {0, 1}. This increases the number of pairs

we need to post by a factor of (	log q
 + 1), which is

polynomial.

This process allows us to do one multiplication with-

out increasing the size of the ciphertext, and obtain an

encryption of the product under a new secret key. But
why stop at two keys s and t? Posting a “chain” of

L secret keys (together with encryptions of quadratic

terms of one secret key using the next secret key) allows

us to perform up to L levels of multiplications without

blowing up the ciphertext size. It is possible to achieve

multiplicative depth L = ε log n (which corresponds to

a degree D = nε polynomial) for an arbitrary constant

ε < 1 under reasonable assumptions, but beyond that,

the growth of the error in the ciphertext kicks in, and

destroys the ciphertext. Handling this requires us to use

the machinery of bootstrapping, which we explain in

the next section.

In conclusion, the above technique allows us to

remove the need for “ideal assumptions” and obtain

somewhat homomorphic encryption from LWE.

1.2. Dimension-Modulus Reduction: Fully Homomor-
phic Encryption Without Squashing

As explained above, the “bootstrapping” method

for achieving full homomorphism requires a C-

homomorphic scheme whose decryption circuit resides

in C. All prior somewhat homomorphic schemes fell

short in this category and failed to achieve this re-

quirement in a natural way. Thus Gentry, followed by

all other previous schemes, resorted to “squashing”:

a method for reducing the decryption complexity at

the expense of making an additional and fairly strong

assumption, namely the sparse subset sum assumption.

We show how to “upgrade” our somewhat homomor-

phic scheme (explained in Section 1.1) into a scheme

that enjoys the same amount of homomorphism but has

a much smaller decryption circuit. All of this, without

making any additional assumptions (beyond LWE)!

Our starting point is the somewhat homomorphic

scheme from Section 1.1. Recall that a ciphertext in that

scheme is of the form (a, b = 〈a, s〉+2e+m) ∈ Z
n
q×Zq ,

and decryption is done by computing (b−〈a, s〉 mod q)
(mod 2). One can verify that this computation, pre-

sented as a polynomial in the bits of s, has degree

at least max(n, log q), which is more than the maxi-

mal degree D that our scheme can homomorphically

evaluate. The bottom line is that decryption complexity

is governed by (n, log q) which are too big for our

homomorphism capabilities.

Our dimension-modulus reduction idea enbales us to

take a ciphertext with parameters (n, log q) as above,

and convert it into a ciphertext of the same message,

but with parameters (k, log p) which are much smaller

than (n, log q). To give a hint as to the magnitude

of improvement, we typically set k to be of size the

security parameter and p = poly(k). We can then set

n = kc for essentially any constant c, and q = 2n
ε

. We

will thus be able to homomorphically evaluate functions

of degree roughly D = nε = kc·ε and we can choose c
to be large enough so that this is sufficient to evaluate

the (k, log p) decryption circuit.

To understand dimension-modulus reduction techni-

cally, we go back to re-linearization. We showed above

that, posting proper public parameters, one can convert a

ciphertext (a, b = 〈a, s〉+2e+m), that corresponds to a

secret key s, into a ciphertext (a′, b′ = 〈a′, t〉+2e′+m)
that corresponds to a secret key t.10 The crucial observa-

tion is that s and t need not have the same dimension

n. Specifically, if we chose t to be of dimension k,

the procedure still works. This brings us down from

(n, log q) to (k, log q), which is a big step but still not

sufficient.

Having the above observation in mind, we wonder if

we can take t to have not only low dimension but also

10In the previous section, we applied re-linearization to a quadratic
function of s, while here we apply it to the ciphertext (a, b) that
corresponds to a linear function of s. This only makes things easier.



small modulus p, thus completing the transition from

(n, log q) to (k, log p). This is indeed possible using

some additional ideas, where the underlying intuition

is that Zp can “approximate” Zq by simple scaling, up

to a small error.

The public parameters for the transition from s to t
will be (ai,τ , bi,τ ) ∈ Z

k
p × Zp, where

bi,τ = 〈ai,τ , t〉+ e+

⌊
p

q
· 2τ · s[i]

⌉
.11

Namely, we scale 2τ ·s[i] ∈ Zq into an element in Zp by

multiplying by p/q and rounding. The rounding incurs

an additional error of magnitude at most 1/2. It follows

that

2τ · s[i] ≈ q

p
· (bi,τ − 〈ai,τ , t〉) ,

which enables converting a linear equation in s into a

linear equation in t. The result of dimension-modulus

reduction, therefore, is a ciphertext (â, b̂) ∈ Z
k
p × Zp

such that b̂ − 〈â, t〉 = m + 2ê. For security, we need

to assume the hardness of LWE with parameters k, p.

We can show that in the parameter range we use, this

assumption is as hard as the one used for the somewhat

homomorphic scheme.12

In conclusion, dimension-modulus reduction allows

us to achieve a bootstrappable scheme, based on the

LWE assumption alone. We refer the reader to Section 3

for the formal presentation of the scheme, and the full

version of this paper [8] for the detailed analysis.

As a nice byproduct of this technique, the ciphertexts

of the resulting fully homomorphic scheme become very

short! They now consist of (k + 1) log p = O(k log k)
bits. This is a desirable property which is also helpful

in achieving efficient private information retrieval pro-

tocols (see below).

1.3. Near-Optimal Private Information Retrieval

In (single-server) private information retrieval (PIR)

protocols, a very large database is maintained by a

sender (the sender is also sometimes called the server,

or the database). A receiver wishes to obtain a specific

entry in the database, without revealing any information

about the entry to the server. Typically, we consider

databases that are exponential in the security parameter

11A subtle technical point refers to the use of an error term e,
instead of 2e as we did for re-linearization. The reason is roughly that
q
p
· 2 is non-integer. Therefore we “divide by 2” before performing

the dimension-reduction and “multiply back” by 2 after.
12For the informed reader we mention that while k, p are smaller

than n, q and therefore seem to imply lesser security, we are able to
use much higher relative noise in our k, p scheme since it does not
need to support homomorphic operations. Hence the two assumptions
are of roughly the same hardness.

and hence we wish that the receiver’s running time and

communication complexity are polylogarithmic in the

size of the database N (at least logN bits are required to

specify an entry in the database). The first polylogarith-

mic candidate protocol was presented by Cachin, Micali

and Stadler [9] and additional polylograithmic protocols

were introduced by Lipmaa [24] and by Gentry and

Ramzan [20]. Of which, the latter achieves the best

communication complexity of O(log3−o(1)(N)).13 The

latter two protocols achieve constant amortized commu-

nication complexity when retrieving large consecutive

blocks of data. See a survey in [30] for more details on

these schemes.

Fully homomorphic, or even somewhat homomor-

phic, encryption is known to imply polylogarithmic PIR

protocols.14 Most trivially, the receiver can encrypt the

index it wants to query, and the database will use that to

homomorphically evaluate the database access function,

thus retrieving an encryption of the answer and sending

it to the receiver. The total communication complexity

of this protocol is the sum of lengths of the public key,

encryption of the index and output ciphertext. However,

the public key is sent only once, it is independent of

the database and the query, and it can be used for

many queries. Therefore it is customary to analyze such

schemes in the public key model where sending the

public key does not count towards the communication

complexity. Gentry [12] proposes to use his somewhat

homomorphic scheme towards this end, which requires

O(log3N) bit communication.15 We show how, using

our somewhat homomorphic scheme, in addition to new

ideas, we can bring down communication complexity

to a near optimal logN · polyloglogN (one cannot do

better than logN ). To obtain the best parameters, one

needs to assume 2
˜Ω(k)-hardness of polynomial-factor

approximation for short vector problems in arbitrary

dimension k lattices, which is supported by current

knowledge. Details follow.

A major obstacle in the naive use of somewhat

homomorphic encryption for PIR is that homomorphism

is obtained with respect to the Boolean representa-

13It is hard to compare the performance of different PIR protocols
due to the multitude of parameters. To make things easier to grasp,
we compare the protocols on equal grounds: We assume that the
database size and the adversary’s running time are exponential in
the security parameter and assume the maximal possible hardness of
the underlying assumption against known attacks. We also assume
that each query retrieves a single bit. We will explicitly mention
special properties of individual protocols that are not captured by
this comparison.

14To be precise, one needs sub-exponentially secure such schemes.
15Gentry does not provide a detailed analysis of this scheme, the

above is based on our analysis of its performance.



tion of the evaluated function. Therefore, the receiver

needs to encrypt the index to the database in a bit-

by-bit manner. The query is then composed of logN
ciphertexts, which necessitate at least log2N bits of

communication. As a first improvement, we notice that

the index need not be encrypted under the somewhat

homomorphic scheme. Rather, we can encrypt using

any symmetric encryption scheme. The database will

receive, an encrypted symmetric key (under the ho-

momorphic scheme), which will enable it to convert

symmetric ciphertexts into homomorphic ciphertexts

without additional communication. The encrypted secret

key can be sent as a part of the public key as it is inde-

pendent of the query. This, of course, requires that our

somewhat homomorphic scheme can homomorphically

evaluate the decryption circuit of the symmetric scheme.

Fully homomorphic schemes will certainly be adequate

for this purpose, but known somewhat homomorphic

schemes are also sufficient (depending on the symmetric

scheme to be used). Using the most communication

efficient symmetric scheme, we bring down the query

complexity to O(logN). As for the sender’s response,

our dimension-modulus reduction technique guarantees

very short ciphertexts (essentially as short as non-

homomorphic LWE based schemes). This translates into

logN ·polyloglogN bits per ciphertext, and the commu-

nication complexity of our protocol follows. We remark

that in terms of retrieving large blocks of consecutive

data, one can slightly reduce the overhead to O(logN)
bits of communication for every bit of retrieved data.

We leave it as an open problem to bring the amortized

communication down to a constant. We refer the reader

to the full version [8] for more details.

Prior to this work, it was not at all known how

to achieve even polylogarithmic PIR under the LWE
assumption. We stress that even if the size of the public

key does count towards the communication complexity,

our protocol still has polylogarithmic communication.

1.4. Other Related Work

Aside from Gentry’s scheme (and a variant thereof

by Smart and Vercauteren [36] and an optimization by

Stehlé and Steinfeld [37]), there are two other fully

homomorphic encryption schemes [11], [7]. The inno-

vation in both these schemes is the construction of a new

somewhat homomorphic encryption scheme. Both these

works then invoke Gentry’s squashing and bootstrap-

ping transformation to convert it to a fully homomorphic

scheme, and thus the security of both these schemes

relies on the sparse subset-sum assumption (plus other

assumptions). The first of these schemes is due to van

Dijk, Gentry, Halevi and Vaikuntanathan [11]. Their

scheme works over the integers and relies on a new

assumption which, roughly speaking, states that finding

a number p given many “noisy” multiples of p is

computationally hard. They cannot, however, reduce

their assumption to worst-case hardness. The second is

a recent work of Brakerski and Vaikuntanathan [7], who

construct a somewhat homomorphic encryption scheme

based on the ring LWE problem [25] whose security

can be reduced to the worst-case hardness of problems

on ideal lattices.

The efficiency of implementing Gentry’s scheme has

also gained much attention. Smart and Vercauteren [36],

as well as Gentry and Halevi [16] conduct a study on

reducing the complexity of implementing the scheme.

In a recent independent work, Gentry and Halevi [15]

showed how the sparse subset sum assumption can be

replaced by either the (decisional) Diffie-Hellman as-

sumption or an ideal lattice assumption, by representing

the decryption circuit as an arithmetic circuit with only

one level of (high fan-in) multiplications.

2. PRELIMINARIES

We will let D denote a distribution over some finite

set S. Then, the notation x
$← D means that x is

chosen from the distribution D, and x
$← S, means

that x is chosen from the uniform distribution over S.

We consider all logarithms to base 2.

In this work, we utilize “noise” distributions over

integers. The only property of these distributions we

use is their magnitude. Hence, we define a B-bounded

distribution to be a distribution over the integers where

the magnitude of a sample is bounded with high prob-

ability. A definition follows.

Definition 2.1 (B-bounded distributions). A distribution
ensemble {χn}n∈N, supported over the integers, is
called B-bounded if Pr

e
$←χn

[|e| > B] ≤ 2−˜Ω(n).

We denote scalars in plain (e.g. x) and vectors in bold

lowercase (e.g. v), and matrices in bold uppercase (e.g.

A). We will treat all vectors as column vectors. The �i
norm of a vector is denoted by ‖v‖i. Inner product is

denoted by 〈v,u〉, recall that 〈v,u〉 = vT · u. Let v
be an n dimensional vector. For all i = 1, . . . , n, the

ith element in v is denoted v[i]. We use the convention

that v[0] � 1.

2.1. Learning With Errors (LWE)

The LWE problem was introduced by Regev [33] as

a generalization of “learning parity with noise”. For

positive integers n and q ≥ 2, a vector s ∈ Z
n
q , and

a probability distribution χ on Zq , let As,χ be the

distribution obtained by choosing a vector a
$← Z

n
q



uniformly at random and a noise term e
$← χ, and

outputting (a, 〈a, s〉+e) ∈ Z
n
q ×Zq . A formal definition

follows.

Definition 2.2 (LWE). For an integer q = q(n) and an
error distribution χ = χ(n) over Zq , the learning with
errors problem LWEn,m,q,χ is defined as follows: Given
m independent samples from As,χ (for some s ∈ Z

n
q ),

output s with noticeable probability.
The (average-case) decision variant of the LWE

problem, denoted DLWEn,m,q,χ, is to distinguish (with
non-negligible advantage) m samples chosen according
to As,χ (for uniformly random s

$← Z
n
q ), from m

samples chosen according to the uniform distribution
over Z

n
q × Zq .

For cryptographic applications we are primarily in-

terested in the average case decision problem DLWE,

where s
$← Z

n
q . There are known quantum [33] and clas-

sical [32] reductions from the problem of approximating

short vector problems on lattices in the worst-case to

solving DLWEn,m,q,χ (on the average). Specifically,

these reductions take χ to be (discretized versions of)

the Gaussian distribution, which is B-bounded for an

appropriate B. We only note here that the best known

algorithms for these problems run in time nearly expo-

nential in the dimension n [3], [29]. More generally, the

best algorithms that solve LWE where the magnitude of

the noise is a 1/2k fraction of the modulus q, run in time

2Õ(n/k).

We refer the reader to [8, Section 3] for definitions

of bootstrappable and (leveled) fully homomorphic en-

cryption schemes, and [13], [12] for an exposition of

Gentry’s bootstrapping theorem.

3. THE NEW FHE SCHEME

We first describe our bootstrappable encryption

scheme BTS in Section 3.1. In Section 3.2, we apply

the bootstrapping theorem to BTS, and obtain a fully

homomorphic scheme based on LWE. We refer the

reader to the full version of this paper [8] for a detailed

description and analysis.

3.1. BTS: A Bootstrappable Encryption Scheme

Let κ ∈ N be the security parameter. The scheme

is parameterized by dimensions n, k ∈ N, a positive

integer m ∈ N, odd moduli q, p ∈ N (note that q and

p need not be prime) and noise distributions χ (over

Zq) and χ̂ (over Zp). n and q are referred to as the

“long” dimension and modulus respectively, while k
and p are the “short” dimension and modulus. χ and

χ̂ are the long and short noise distributions. Additional

parameters of the scheme are m ∈ N which is used

towards public key generation, and L ∈ N which is an

upper bound on the maximal multiplicative depth that

the scheme can homomorphically evaluate. The message

space of the encryption scheme is GF(2).
We encourage the reader to consider the following

(non-optimal, but easier to understand) settings as a

running example: k = κ, n = k4, q ≈ 2
√
n, p =

(n2 log q) · poly(k) = poly(k), m = O(n log q) and

L = 1/3 log n = 4/3 log k. The distributions χ, χ̂ can

be thought of as being n- and k-bounded, respectively.

Key generation BTS.Keygen(1κ):
The key generation algorithm first samples L + 1

“long vectors” s0, . . . , sL
$← Z

n
q , and computes, for all

� ∈ [L], 0 ≤ i ≤ j ≤ n, and τ ∈ {0, . . . , 	log q
}, the

value ψ�,i,j,τ :=(a�,i,j,τ , b�,i,j,τ ) ∈ Z
n
q × Zq where:

b�,i,j,τ :=〈a�,i,j,τ , s�〉+ 2 · e�,i,j,τ + 2τ · s�−1[i] · s�−1[j]
(1)

Here, a�,i,j,τ
$← Z

n
q , e�,i,j,τ

$← χ (recall that, according

to our notational convention, s�−1[0] � 1). Note that

the pair (a�,i,j,τ , b�,i,j,τ ) is similar to an encryption

of 2τ · s�−1[i] · s�−1[j] (mod q) via an LWE-based

scheme, except this “ciphertext” is not decryptable since

the “message” is not a single bit value. Thus, we

prefer to call them “pseudo-encryptions”. Let Ψ �
{ψ�,i,j,τ}�,i,j,τ be the set of all these values.

Secondly, sample a “short” vector ŝ
$← Z

k
p and

compute additional parameters: For all i ∈ [n], τ ∈
{0, . . . , 	log q
}, sample âi,τ

$← Z
k
p , êi,τ

$← χ̂, and

compute

b̂i,τ :=〈âi,τ , ŝ〉+ êi,τ +

⌊
p

q
· (2τ · sL[i])

⌉
(mod p) .

Set ψ̂i,τ :=
(
âi,τ , b̂i,τ

)
∈ Z

k
p × Zp, and

Ψ̂:={ψ̂i,τ}i∈[n],τ∈{0,...,�log q�} .

The key-generation algorithm proceeds to choose a

uniformly random matrix A
$← Z

m×n
q and a vector e

$←
χm, and compute b:=As0 + 2e.

It then outputs the secret key sk = ŝ, the evaluation

key evk = (Ψ, Ψ̂), and the public key pk = (A,b).16

Encryption BTS.Encpk(μ):
Recall that pk = (A,b). To encrypt a message μ ∈

GF(2), sample a vector r
$← {0, 1}m and set (just like

in Regev’s scheme)

v:=AT r and w:=bT r+ μ .

16The public key pk is essentially identical to the public key in
Regev’s scheme.



The output ciphertext contains the pair (v, w), in ad-

dition to a “level tag” which is used during homomor-

phic evaluation and indicates the “multiplicative depth”

where the ciphertext has been generated. For freshly

encrypted ciphertext, therefore, the level tag is zero. For-

mally, the encryption algorithm outputs c:=((v, w), 0).

Homomorphic evaluation BTS.Evalevk(f, c1, . . . , ct):

Here, the function f : {0, 1}t → {0, 1} is represented

by a binary arithmetic circuit with ’+’ gates of arbitrary

fan-in and ’×’ gates with fan-in 2. We further require

that the circuit is layered, namely that it is composed

of homogenous layers of either all ’+’ gates or all ’×’

gates (it is easy to see that any arithmetic circuit can

be converted to this form). Lastly, we require that the

multiplicative depth of the circuit (the total number of

‘×‘ layers) is exactly L.

We homomorphically evaluate the circuit f gate

by gate. Namely, we will show how to perform ho-

momorphic addition (of arbitrarily many ciphertexts)

and homomorphic multiplication (of two ciphertexts).

Combining the two, we will be able to evaluate any such

function f . The last step in homomorphic evaluation is

the “dimension and modulus reduction” step. Looking

ahead, we note that it is this final step that makes the

scheme bootstrappable.

Ciphertext structure during evaluation: During the ho-

momorphic evaluation, we will generate ciphertexts of

the form c = ((v, w), �), where the tag � indicates the

multiplicative level at which the ciphertext has been

generated (hence fresh ciphertexts are tagged with 0).

The requirement that f is layered will make sure that

throughout the homomorphic evaluation all inputs to

a gate have the same tag. In addition, we will keep

the invariant that the output of each gate evaluation

c = ((v, w), �), is such that

w − 〈v, s�〉 = μ+ 2 · e (mod q) , (2)

where μ is the correct plaintext output of the gate,

and e is a noise term that depends on the gate’s input

ciphertexts. Note that it always holds that � ≤ L due

to the bound on the multiplicative depth, and that the

output of the homomorphic evaluation of the entire

circuit is expected to have � = L.

Homomorphic evaluation of gates:
− Addition gates. Homomorphic evaluation of a ’+’

gate on inputs c1, . . . , ct, where ci = ((vi, wi), �),
is performed by outputting

cadd = ((vadd, wadd), �):=

((∑
i

vi,
∑
i

wi

)
, �

)
.

Informally, one can see that

wadd − 〈vadd, s�〉 =
∑
i

(wi − 〈vi, s�〉)

=
∑
i

(μi + 2ei) =
∑
i

μi + 2
∑
i

ei ,

where μi is the plaintext corresponding to ci (thus,

satisfying the invariant Equation 2). The output of

the homomorphic evaluation, thus, corresponds to

the sum of the inputs, with the noise term being the

sum of input noises.

− Multiplication gates. We show how to multiply

ciphertexts c, c′ where c = ((v, w), �) and c′ =
((v′, w′), �) (recall that multiplication gates have

fan-in 2), to obtain an output ciphertext cmult =
((vmult, wmult), � + 1). Note that the level tag in-

creases by 1.

We first consider an n-variate symbolic polynomial

over the unknown vector x:

φ(x) = φ(w,v),(w′,v′)(x) � (w−〈v,x〉)·(w′−〈v′,x〉) .
(3)

We symbolically open the parenthesis of this

quadratic polynomial, and express it as

φ(x) =
∑

0≤i≤j≤n

hi,j · x[i] · x[j] ,

where hi,j ∈ Zq are known (we can compute

them from (v, w), (v′, w′) by opening parenthesis

in Eq. (3)).17

For technical reasons (related to keeping the error

growth under control), we want to express φ(·) as a

polynomial with small coefficients. We consider the

binary representation of hi,j , letting hi,j,τ be the

τ th bit in this representation. In other words hi,j =∑�log q�
τ=0 hi,j,τ · 2τ , for hi,j,τ ∈ {0, 1}.

We can express φ therefore as

φ(x) =
∑

0≤i≤j≤n
τ∈{0,...,�log q�}

hi,j,τ ·
(
2τ · x[i] · x[j]) .18

We recall that the evaluation key evk = Ψ contains

elements of the form ψ�,i,j,τ = (a�,i,j,τ , b�,i,j,τ )
such that

2τs�[i]s�[j] ≈ b�+1,i,j,τ − 〈a�+1,i,j,τ , s�+1〉 .
17We once again remind the reader that because of the notational

trick of setting x[0] � 1, this expression captures the constant term
in the product, as well as all the linear terms, thus homogenizing the
polynomial φ(x).

18This can be interpreted as a polynomial with small coefficients
whose variables are (2τ · x[i] · x[j]).



The homomorphic multiplication algorithm will thus

set

vmult:=
∑

0≤i≤j≤n
τ∈{0,...,�log q�}

hi,j,τ · a�+1,i,j,τ , and

wmult =
∑

0≤i≤j≤n
τ∈{0,...,�log q�}

hi,j,τ · b�+1,i,j,τ ,

A simple calculation shows that wmult−〈vmult, s�+1〉 =∑
i,j,τ hi,j,τ (b�+1,i,j,τ − 〈a�+1,i,j,τ , s�+1〉) = φ(s�) +

2e1 = μμ′ + 2e2, where e1 and e2 are “small” error

terms (thus, satisfying Invariant 2).

Dimension and Modulus Reduction. After homomorphic

evaluation of f , we reduce the dimension and modulus

of the resulting ciphertext cf (from (n, q) to (k, p)) as

follows. Consider the following function from Z
n into

the rationals modulo p

φ(x) � φv,w(x) �
p

q
·
(
q + 1

2
· (w − 〈v,x〉)

)
(mod p) .

Rearranging, one can find h0, . . . , hn ∈ Zq such that

φ(x) =

n∑
i=0

hi · (p
q
· x[i]) (mod p) ,

Let hi,τ be the τ th bit of hi, for all τ ∈ {0, . . . , 	log q
}.
Then

φ(x) =
n∑

i=0

�log q�∑
τ=0

hi,τ · (p
q
· 2τ · x[i]) .

Using the parameters in Ψ̂, we create a new ciphertext

ĉ = (v̂, ŵ) ∈ Z
k
p × Zp by setting

v̂ := 2 ·
n∑

i=0

�log q�∑
τ=0

hi,τ · âi,τ (mod p) ∈ Z
k
p

ŵ := 2 ·
n∑

i=0

�log q�∑
τ=0

hi,τ · b̂i,τ (mod p) ∈ Zp .

By a similar calculation as above, one can verify that

the ciphertext (v̂, ŵ) satisfies Invariant 2.

The output of BTS.Eval is the new ciphertext ĉ ∈
Z
k
p × Zp. Note that the bit-length of ĉ is (k + 1) log p.

Decryption BTS.Decŝ(ĉ):

To decrypt ĉ = (v̂, ŵ) ∈ Z
k
p × Zp (recall, again,

that we only need to decrypt ciphertexts that are out-

put by BTS.Eval), compute μ∗:= (ŵ − 〈v̂, ŝ〉 (mod p))
(mod 2).

If indeed ŵ− 〈v̂, ŝ〉 = μ+2ê (mod p) then μ∗ = μ
so long as ê is small enough.

The following theorem summarizes the homomorphic

properties of BTS. For a proof, see the full version [8].

Theorem 3.1. Let n = n(κ) ≥ 5 be any polynomial,
q ≥ 2n

ε ≥ 3 for some ε ∈ (0, 1) be odd, χ be any
n-bounded distribution, and m = (n + 1) log q + 2κ.
Let k = κ, p = 16nk log(2q) (odd) and χ̂ be any
k-bounded distribution. Then BTS can homomorphi-
cally evaluate Boolean circuits of multiplicative depth
O(ε log n). Furthermore, under the DLWEn,q,χ and the
DLWEk,p,χ̂ assumptions, the scheme BTS is also CPA
secure.

3.2. Bootstrapping and Full Homomorphism

We now show how to apply Gentry’s bootstrapping

theorem [13, Theorem 1] to achieve full homomor-

phism. In order to do this, we first need to bound the

complexity of the (augmented) decryption circuit. Since

our decryption is essentially the computation of an inner

product, we first bound the complexity of this operation.

Lemma 3.2. Let (v̂, ŵ) ∈ Z
k
p × Zp. There exists an

arithmetic circuit over GF (2) with fan-in 2 gates and
O(log k+log log p) depth, that on input ŝ ∈ Z

k
p (written

in binary) computes (ŵ − 〈v̂, ŝ〉 (mod p)) (mod 2).

We can now apply the bootstrapping theorem to

obtain a fully homomorphic scheme. In particular, there

is a constant C ∈ N such that setting n = kC/ε and the

rest of the parameters as in Theorem 3.1, we see that

BTS can homomorphically evaluate its own decryption

circuit (and then some). This shows that BTS is a

bootstrappable encryption scheme. Applying Gentry’s

bootstrapping theorem [13, Theorem 1], we get:

Theorem 3.3. There exists a leveled FHE scheme
based on the DLWEn,q,χ and DLWEk,p,χ̂ assumptions.
Furthermore, if BTS is weakly circular secure (see [8]
for a formal definition), then there exists an FHE scheme
based on the same assumptions.
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